Structural Learning with Forgetting of Neural Networks

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Less-forgetting Learning in Deep Neural Networks

A catastrophic forgetting problem makes deep neural networks forget the previously learned information, when learning data collected in new environments, such as by different sensors or in different light conditions. This paper presents a new method for alleviating the catastrophic forgetting problem. Unlike previous research, our method does not use any information from the source domain. Surp...

متن کامل

Learning with Forgetting: an Approach to Achieve Adaptive Neural Networks

Much work on modelling pattern recognition by AI systems has focused on the stability and plasticity of a system’s ongoing response to novel inputs. This paper discusses a general learning mechanism for ART2 neural networks, which incorporates forgetting by long-term memory trace decay. Such approach enables the system to reuse memory resources and adapt to a huge in diversity or continually ch...

متن کامل

Learning and Forgetting Surface Classifications with Dynamic Neural Networks

This paper refers to the problem of adaptability over an infinite period of time, regarding dynamic networks. A never ending flow of examples have to be clustered, based on a distancemeasure. The developed model is based on the self-organizing feature maps of Kohonen [6], [7] and some adaptations by Fritzke [3]. The problem of dynamic surface classification is embedded in the SPIN project, wher...

متن کامل

A dynamical system perspective of structural learning with forgetting

Structural learning with forgetting is an established method of using Laplace regularization to generate skeletal artificial neural networks. In this paper we develop a continuous dynamical system model of regularization in which the associated regularization parameter is generalized to be a time-varying function. Analytic results are obtained for a Laplace regularizer and a quadratic error sur...

متن کامل

Dynamics of Structural Learning with an Adaptive Forgetting Rate

Structural learning with forgetting is a prominent method of multilayer, feedforward neural network complexity regularization. The level of regularization is controlled by a parameter known as the forgetting rate. The goal of this paper is to establish a dynamical system framework f o r the study of structural learning both to ofSer new insights into this methodology and to potentially provide ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Japan Society for Fuzzy Theory and Systems

سال: 1997

ISSN: 0915-647X,2432-9932

DOI: 10.3156/jfuzzy.9.1_2